数据治理包含
这里包括对业务、数据、应用、组织架构、法律法规等方方面面的认知。举个例子:你的业务战略目标是什么,业务域、业务线、业务项能不能说清楚;你有多少结构化数据、半结构化数据、非结构化数据,数据体量有多大,都存哪,使用场景、使用角色都是什么,数据和业务之间的关系是什么;你建设了多少应用系统,应用和业务之间的关系是什么;你的组织架构长什么样,流程什么样,不同部门之间的关系是什么,权责利如何划分,信息化成熟度什么样,人员技能又如何;你的企业要遵守哪些法律法规,有没有跨境业务,行业有没有监管要求?
数据治理数据性要求
作为数据应用的内容本身,将会有更多的性要求,因此,数据整个生命周期的安全将是企业在数字化融合下的重要考量内容,数据在采集、传输、处理、交换、销毁全生命中,应该采用哪些技术手段,保障数据不被获取,数据如何管理才能平衡业务发展和安全管控之间矛盾。于此相关的数据技术、数据库审计技术、数据交换技术、网络监控技术等的,该类技术在数字化建设浪潮中将迎来快速发展的机遇。
数据治理数据分类
大家都知道我们擅长做数据分类分级,对于我们来说,这确实是一个老生常谈的问题,但在整个数据安全领域中,它却又是般的存在,不得不提。散落在企业各个存储角落的那些数据,在业务维度上,都属于哪个业务域、哪条业务线、哪个业务系统、哪个业务项、哪个业务分类,这些被贴上了业务标签的数据,将更容易从业务视角进行解读,为数据分级打下根基。从数据资产化的角度来看,数据分类可以独立存在,然而数据分级在某种程度上来说,需要依赖于数据分类的结果,因为数据分类令数据有了明确的业务属性。
数据治理步骤
共享数据准备阶段
共享数据提供方根据共享业务需求完成共享数据归集、数据分类分级,并对共享数据进行持续性的维护,保证共享数据的准确、完整、可用和真实。
共享数据交换阶段
需对交换服务的资源方和使用方之间提供审核及授权等权限,共享数据交换服务方采用身份鉴别、访问控制、安全传输、过程追溯等技术手段,保证信息共享交换过程中交换实体可信、数据传输安全、交换行为记录可追查。
以上就是关于徐州大数据脱敏公司即时留言「多图」通信地址怎么填全部的内容,关注我们,带您了解更多相关内容。