废水经改良氧化沟处理后进入二沉池。在重力作用下,泥浆和水可以有效分离,出水化学需氧量低于130毫克升-1。
如果需要进一步降低化学需氧量,二沉池出水可进入混凝沉淀系统对生化出水进行深度处理,使化学需氧量低于60毫克升-1,有机物去除率可达55%以上,悬浮物去除效果可达80%。
二沉池中的部分剩余污泥通过污泥泵返回氧化沟系统,继续参与好氧生物反应;部分排入污泥脱水车间,脱水后外运处理。
过滤器中装有一定量的粒径较小的颗粒滤料。由于滤料表面生长有高活性生物膜,可以在过滤器中曝气。污水经过时,可以通过滤料的氧化降解达到快速净化污水的效果,这就是生物氧化降解过程。同时,当流经污水时,由于滤料处于密实状态,利用滤料的小粒径和生物膜的絮凝作用,可以拦截污水中的悬浮物,从而保证脱落的生物膜不会随水漂一起出来,这就是拦截效果。运行一段时间~一段时间后,随着水头损失的增加,为了释放悬浮固体和更新生物膜,过滤器应反冲洗,即反冲洗过程。
(3)反硝化速率反硝化速率是指每天每单位活性污泥反硝化的酸式盐量。脱氮率与温度等因素有关,典型值为0.06 ~ 0.07 g NO3-n/gmlsvss× d. (4)缺氧区溶解氧的脱氮率应尽可能低,*好为零,这样反硝化菌可以“完全”脱氮,提高脱氮效率。然而,从污水处理厂的实际运行情况来看,缺氧区溶解氧仍难以控制在0.5毫克/升以下,从而影响生物脱氮过程,进而影响出水总氮指数。(5) ⑤BOD5/TKN由于反硝化菌在分解有机物的过程中脱氮脱氮,进入缺氧区的污水中必须有足够的有机物,以保证脱氮的顺利进行。目前,许多污水处理厂配套管网建设滞后,进水BOD5低于设计值,而氮磷指标等于或高于设计值,使得进水碳源不能满足碳源脱氮的需求,也导致出水总氮不时超标的情况。
当酸碱度突然下降时,好氧区和厌氧区的磷浓度急剧上升。酸碱度下降得越大,释放量就越大。这表明,由酸碱度降低引起的磷释放不是磷积累细菌对酸碱度变化的生理生化反应,而是纯化学的“酸溶解”效应。此外,由酸碱度降低引起的厌氧释放量越大,需氧磷吸收能力越低。这表明由酸碱度降低引起的释放是破坏性的和无效的。当酸碱度增加时,磷会有轻微的吸收。(3)溶解氧每毫克分子氧消耗1.14毫克容易生物降解的化学需氧量(COD),抑制聚磷生物的生长,难以达到预期的除磷效果。